The O, OH and OOH-assisted selective coupling of methanol on Au-Ag(111).

نویسندگان

  • Wenhui Zhong
  • Jinxia Liang
  • Wei Hu
  • Xinrui Cao
  • Chuanyi Jia
  • Jun Jiang
چکیده

Using density functional theory (DFT) calculations, we performed a thorough theoretical investigation on the catalytic mechanism of oxidative self-coupling of methanol with molecular oxygen on Au-Ag catalysts. It is found that molecular oxygen can be activated via a hydroperoxyl (OOH) intermediate by taking a hydrogen atom from co-adsorbed methanol with an energy barrier of 0.51 eV, which is actually the rate determining step for the overall reaction. The O, OH and OOH oxidant formation proceeds via two channels of I and II with low barriers. We demonstrated that the oxidative coupling of methanol by OOH, atomic oxygen, and hydroxyl is much more favorable than the total oxidation of methanol, and is responsible for the high selectivity of Au-Ag catalysts in methanol oxidation. The revealed activation mechanism provides an efficient pathway for optimizing the selective coupling of methanol with dioxygen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of O-Assisted Selective Coupling of Methanol on Au(111)

We report the first systematic theoretical study of the oxidative self-coupling of methanol to form the ester, methylformate, on atomic-oxygen-covered Au(111) using density functional theory calculations. The first step in the process —dissociation of the O-H bond in methanol—has a lower barrier for transfer of the proton to adsorbed oxygen than for transfer of H to gold, consistent with experi...

متن کامل

Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts.

One important aid in understanding catalysis by gold nanoparticles would be to understand the strength with which they bond to different support materials and the strength with which they bond adsorbed intermediates, and how these strengths depend on nanoparticle size. We present here new measurements of adsorption energies by single crystal adsorption calorimetry, and new analyses of other rec...

متن کامل

Vapour-phase gold-surface-mediated coupling of aldehydes with methanol.

Selective coupling of oxygenates is critical to many synthetic processes, including those necessary for the development of alternative fuels. We report a general process for selective coupling of aldehydes and methanol as a route to ester synthesis. All steps are mediated by oxygen-covered metallic gold nanoparticles on Au(111). Remarkably, cross-coupling of methanol with formaldehyde, acetalde...

متن کامل

Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity.

We report on a combined scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) study on the surface-assisted assembly of the hexaiodo-substituted macrocycle cyclohexa-m-phenylene (CHP) toward covalently bonded polyphenylene networks on Cu(111), Au(111), and Ag(111) surfaces. STM and XPS indicate room temperature dehalogenation of CHP on ...

متن کامل

The Effect of Coinage Transition Metal (Cu, Ag, Au) Substitutions on Two-electron Redox Potential of Quinones

Quinones are a class of compounds which have widespread importance in chemistry, biology and medicine. Because of their appropriate performance in electron transferring rate, quinones are among the most applicable mediators in biosensors. Recently, the effects of different non-metal substitutions on redox potential of quinone have been investigated to design suitable mediators for different ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 15  شماره 

صفحات  -

تاریخ انتشار 2016